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Abstract. Accurate solar resource information is a fundamental requirement for 

solar energy ventures. The lack of precision in solar radiation data can signifi-

cantly affect the success of the projects. Argentina has solar radiation ground 

measurement networks. The information obtained through this method is limited 

due to its spatial sparsity, since it is only possible to measure with appropriate 

quality in some sites across the territory. To overcome this limitation, it is com-

mon to generate models capable of estimating solar radiation through satellite 

images, which provide spatial resolution. This work develops and validates an 

empirical model for this purpose based on Machine Learning (ML), demonstrat-

ing that it is a useful and accurate tool to be considered. This allows ventures that 

make use of this type of energy to have greater certainty in the availability of the 

resource, and therefore in the decision-making process. Variables obtained from 

images of the geostationary meteorological satellite GOES-16, McClear clear-sky 

model estimates, and geometrically calculated information are used as input to 

the algorithms. The results of the ML models are compared with estimates from 

pre-existing models for the region that incorporate physical modelings, such as 

Heliosat-4 and CIM-ESRA. The evaluation shows a higher performance of the 

ML methods when multi-scale satellite information is used as input. The incor-

poration of multi-scale satellite data is not yet implemented in solar radiation 

physical modeling, which is an advantage of ML modeling. 
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1 Introduction 

There are different ways to estimate solar radiation from satellites. One type of model, 

called physical models, attempts to solve the radiative transfer equations of solar radi-

ation through the atmosphere. To do this, they use the information on atmospheric com-

ponents that influence the absorption and scattering of solar radiation. Their perfor-

mance depends on the quality with which these variables are known, which are opera-

tionally estimated by satellite through inverse problems or by atmospheric models. An-

other type of model, called statistical or empirical, does not attempt to model the phys-

ical attenuation phenomena through the atmosphere but adjusts the estimates to ground 

measurements using a set of coefficients or parameters. These models are therefore 

simpler to calculate but may have extrapolation problems to other sites where local 

conditions can be different. An intermediate category is that of hybrid models (semi-

empirical), where a physical basis is assumed and parameters with physical meaning 

are adjusted to ground data. 

 

Among the satellite models available for the Pampa Humeda region with a physical 

basis, some that are particularly relevant for this work are the CIM-ESRA [9] and the 

Heliosat-4 [19]. The first is a semi-empirical model based on information from the vis-

ible channel of the GOES-16 satellite (located at latitude 75⁰ W), operated by NOAA, 

while the second is a physical model based on information from the European Meteosat 

Second Generation (MSG) satellite, located at the Greenwich meridian. 

 

The CIM-ESRA model replicates the strategy used by other satellite models such as 

SUNY [16][18] or Heliosat-2 [21]. In these models, global horizontal irradiance (GHI) 

is estimated as the irradiation that would occur under clear sky conditions modulated 

by an empirical factor based on a cloudiness index (CIM is due to Cloud Index Model) 

obtained from satellite images. That is,   

  

                                                            𝐼 = 𝐼𝑐𝑠𝐹(𝐶)                                                                        (1)     

 

where I is the estimated solar irradiance, Ics is the irradiance that would occur under 

clear sky conditions (estimated by a clear sky model), and F is a cloud attenuation factor 

adjusted locally (or regionally) that depends on a cloudiness index (C). CIM-ESRA 

uses the ESRA clear sky model [21], whose only input variable is the Linke turbidity 

for an air mass equal to two, TL [12]. This variable represents the state of the cloud-

free atmosphere using a single parameter, which models the aerosols and water vapor 

effects. The CIM-ESRA model uses seasonal average cycles of TL for its operation 

[10]. 

 

The operational model of the Copernicus Atmosphere Monitoring Service (CAMS) 

is Heliosat-4 [19]. This model consists of two combined physical sub-models: McClear 

[11], which estimates irradiance under clear sky conditions, and McCloud, which adds 

the effect of cloudiness. Both McClear and McCloud are based on outputs from the 
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radiative transfer model LibRadTran [4], which is computationally expensive. McClear 

uses inputs such as aerosols properties, the precipitable water column, and ozone ob-

tained from the CAMS reanalysis database (atmospheric modeling), as well as daily 

estimates of land surface albedo obtained from the MODIS satellite instrument (a low-

earth orbit meteorological satellite). McCloud estimates the attenuation of solar radia-

tion in the presence of clouds with MSG images, and the use of an adapted 

APOLLO/SEV methodology [7]. The Heliosat-4 estimates are available as a free inter-

net service for the geographic coverage of the MSG satellite and are widely used (on 

the other hand, the McClear model is available with global coverage). 

 

Currently, machine learning techniques such as artificial neural networks (ANN), k-

nearest neighbors (kNN), support vector regression (SVR), extreme learning machines 

(ELM), and tree-based ensembles are also used to estimate solar radiation [5]. The input 

variables used in some works include the month, latitude, longitude, and altitude, as 

well as meteorological variables such as vapor pressure, land surface temperature, day 

length, temperature, humidity, precipitation, cloudiness, wind speed, evaporation, and 

the global solar radiation is the output of the models [20]. The data is divided into train-

ing and validation sets, the models are trained with the training set and validated with 

the remaining data. 

 

Other works use an empirical clear sky model combined with variables such as tem-

perature, humidity, and pressure obtained from available meteorological databases on 

land as input to a neural network [6]. A second work in this same line uses values from 

meteorological stations similar to those mentioned above [22], proposing different 

models (different combinations of input variables) all based on neural networks. A third 

work [15] compares the use of neural networks for different sky conditions where, ac-

cording to the authors, they find poor performance. All these works make use of ground 

measurements. Works using satellite information under the ML framework are scarce 

for solar radiation [5][23]. It is interesting to note that the use of ground-based meas-

urements limits the estimation tools significantly, both in terms of data availability and 

extrapolation capacity to sites where there are no ground measurements. Satellite infor-

mation does not have these limitations, as it is accessible and available, even operation-

ally, and is capable of observing all points in large continental regions with spatial res-

olution suitable for solar energy projects (the pixel width is typical of 1 km, enough to 

model a large-scale solar photovoltaic plant). Therefore, satellite-based methods have 

a much higher potential. 
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2 Materials and methods 

2.1 Ground-based measurements 

 

The GERSolar R&D group manages a ground-based solar radiation measurement net-

work that covers the Buenos Aires Province. The global horizontal irradiance (GHI) 

measurements are recorded in all stations with a 1-minute resolution, being the most 

common solar radiation data. In this work, a 10-minute time scale is used, which is the 

same as the GOES-16 satellite image rate. Therefore, the minute resolution ground data 

are averaged to obtain their 10-minute value, following the criterion that each average 

should have at least 2/3 of the corresponding minute data. The quality of measurements 

is a prerequisite for any meaningful use. The 10-minute GHI data series were subjected 

to a quality control algorithm consisting of four successive filters (Table 1) and a visual 

inspection of the series to eliminate shading periods or other anomalous data. The se-

lected filters are standard in the field [14]. The objective of the quality procedure is to 

select a typical data set, where missing, anomalous, or error-affected data, and meas-

urements affected by isolated or short-lived phenomena (such as over-irradiance) are 

excluded [2]. 

 

Table 1. Filters applied to ground-based measurements 

Filter Criterion Description 

1 𝛼𝑠 > 7° Minimun solar height 

2 −2𝑊/𝑚2 < 𝐼ℎ < 𝐼0. 1.2. 𝑐𝑜𝑠𝜃𝑧
1.2 + 50𝑊/𝑚2 

BSRN levels (Long y 

Shi, 2008) 

3 0𝑊/𝑚2 < 𝐼ℎ < 𝐼ℎ
𝐸𝑆𝑅𝐴(𝑇𝐿 = 1.8) 

Elevations of a clear 

sky model 

4 𝑘𝑡𝑝 < 0.89 
Bound Perez clarity 

index 

 

 

The first filter sets a minimum solar altitude of 7º and excludes samples taken during 

sunrise and sunset. This filter aims to eliminate ground data with higher relative error 

due to the measuring equipment, which presents known directional errors at high inci-

dence angles. The second filter uses a widely used criterion that establishes a range of 

values for extremely rare cases. This criterion is based on the solar zenith angle [13] 

and is recommended by the worldwide Baseline Solar Radiation Network (BSRN). The 

third filter imposes an upper limitation on the measured values, which correspond to 

clear sky conditions. This filter uses the ESRA model with very low atmospheric tur-

bidity (TL = 1.8), which ensures an upper limit for GHI [1]. Finally, the fourth filter 

imposes a maximum value on the modified clearness index by Perez et al. [17]. The 

modified clearness index is defined as a regular clearness index (the GHI normalized 

by its corresponding top-of-the-atmosphere value) but without its dependence on solar 
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altitude. In summary, each filter has its own criteria and is used to exclude inaccurate 

or unreliable data. In this section, the results for the Luján station operated by GERSolar 

along with INTA for the years 2019-2021 are shown, and its precise location is indi-

cated in Table 2. 

 

Table 2. Location of the measurement station and its measurement equipment. The total number 

N (filtered) corresponds to the reliable 10-minute measurements in the 2019-2021 period. 

Estation 
Latitude 

(Degrees) 

Longitude 

(Degrees) 
Equipment 

N Totals 

(leaked data) 

Luján, ARG -34.558 -59.062 CMP11 & CMP21 62,592 

 

 

The solarimetric station in Luján has data loggers from Campbell Scientific and uses 

two Kipp & Zonen CMP11 and CMP21 pyranometers as measurement equipment. 

These devices are Class A according to the equipment classification standard for solar 

radiation measurement (ISO 9060:2018). The data series was assembled by selecting 

the higher quality equipment during any concurrent measurement period, and one of the 

data series was chosen when the other device failed or the measurement had errors. Fig. 

1 shows the distribution of the data points for the period considered in this article, after 

the series underwent the quality control. The white gaps correspond to missing data. 

 

 
Fig. 1. Plot of ground data after subjecting it to quality control algorithms. 
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2.2 Satellite images 

The visible channel images (C02 channel, centered at 0.64 μm) of the GOES-16 mete-

orological geostationary satellite were used. This satellite is part of the geostationary 

satellite network for Earth observation that covers the entire globe. This particular sat-

ellite is operated by the National Oceanic and Atmospheric Administration (NOAA) of 

the United States and has been generating images for the entire American continent 

since 2018 with a time interval between 10 and 15 minutes. The satellite is located over 

the Earth's equator at -75°W longitude in geostationary orbit. Its spatial resolution var-

ies along the image, being 500 m at its nadir. Over the Pampa Húmeda region, the pixel 

size varies between 1 and 3 km. The visible channel is suitable for estimating solar 

radiation because diurnal cloudiness is recognizable and quantifiable. Clouds are typi-

cally more reflective than the background (the Earth's surface), and therefore distin-

guishable. 

 

The two classical variables calculated from visible channel satellite images are the 

reflectance factor (FR) and the planetary reflectance (RP). The latter is also known as 

Earth albedo and is denoted as 𝜌. The FR is a normalization of the radiance measured 

by the satellite from each pixel with respect to the maximum it is capable of measuring 

(i.e., the solar radiation incident on the top of the atmosphere normalized by the spectral 

response of the satellite radiometer). It is therefore in the interval [0, 1] and contains, 

in addition to daylight cloudiness information, spatial information about the variable 

illumination of the Sun over the Earth’s surface. The quantity RP contains the additional 

normalization to remove this spatial dependence and is effectively the reflectivity of 

the Earth, in its strict physical sense. 

 

2.3 Data set configuration 

The following input variables were used for the machine learning algorithms: 

 

- Cos(z) - Cosine of the solar zenith angle. It is the angle between the local 

zenith (the local vertical) and the Sun’s direction. This quantity varies instan-

taneously according to the relative movement between Earth and the Sun and 

also depends on the position on Earth’s surface (latitude and longitude of the 

site). 

 

- McClear estimates - The McClear clear sky model is widely used in solar ra-

diation simulation. Its main advantages include that the estimates are freely 

available to download, and that it is one of the most accurate models [24]. The 

model was developed by Lefèvre et al. [11] and uses atmospheric information 

such as pressure, temperature, humidity, and aerosol optical thickness. The 

model employs a physics simulation algorithm based on radiative transfer cal-
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culations and atmospheric modeling to estimate direct, diffuse, and global so-

lar radiation under clear sky conditions for a specific location. These estimates 

were downloaded here from the CAMS web portal. 

 

- Multiscale satellite information (F01-F18 and R01-R18) - These are spatial 

averages of the Reflectance Factor and Earth Albedo, respectively, in square 

latitude-longitude cells of incremental size. The numbers from 01 to 18 indi-

cate the increasing cell size in which the satellite information is averaged, 

meaning cell sides from 0.01° to 0.90° respectively. The relationship between 

the cell side and numbering is not linear. For smaller cell sizes, the spacing 

between sides has a higher resolution, and vice versa for larger cell sizes. 

 

2.4 Definition of training and validation sets 

The aim of the ML algorithms is to learn how to estimate GHI from satellite data by 

adjusting their parameters to ground measurements. The annual seasonality of GHI is 

characteristic. Hence, it is an adequate choice to select the training and testing data sets 

on an annual basis. A data set corresponding to two of the three available years was 

used for training and the remaining year for validation. This was done for all possible 

year permutations. Taking the validation set in this way avoids three possible biases. 

The first one is related to the random distribution of data in the training and validation 

sets as consecutive time samples can be very similar to each other. The second one is 

related to the particularities of each year as one year could be sufficiently different from 

another. The third one is related to incomplete data as there is a two-month gap in 2020 

that was unrecoverable, and for the years 2019 and 2021, the month of December is 

missing. 

 

2.5 Supervised learning models 

Three ML models were considered: a linear multiple regression, which allows for a 

quick white box estimation; a Feed Forward Neural Network that uses a 100 neurons 

hidden layer, ReLU activation function, and Adam optimizer; and a Random Forest 

with 30 estimators. The latter two are non-linear models. 

 

 

3 Results and discussion 

3.1 Performance reference 

GHI estimations from the CIM-ESRA and Heliosat-4 satellite models were downloaded 

for the Luján station and the period 2019-2021 from the websites 



8 

http://les.edu.uy/online/stack-loc/ (CIM-ESRA, LES web portal) and 

https://www.soda-pro.com/web-services (Heliosat-4, CAMS web portal). The CIM-

ESRA estimations are available on a 10-minute scale for different Latin American sta-

tions, including Luján, Argentina. The CAMS estimations are not available at the 10-

minute temporal resolution used in this article, so one-minute data were downloaded 

and then integrated into the 10-minute time scale. The data from these models were 

used as a performance reference for the developed statistical ML models against avail-

able databases for the region. 

 

The performance metrics used in this work are the MBE, RMSE, MAE, and R2 

(Mean Bias Error, Root Mean Square Error, Mean Absolute Error, and R-squared) re-

spectively. For the first three, their corresponding relative values are also reported, 

which are named as MBEn, RMSEn, and MAEn, respectively. These metrics are ex-

pressed as a percentage of the measurement average value, which is 420 W/m2 for this 

station. MBE is the systematic bias of the models, and RMSE and MAE measure the 

error dispersion with different weighting laws, being the former more sensitive to out-

liers. The evaluation results of these models can be seen in Table 3. 

 

   Table 3. Performance metrics of the Heliosat-4 (CAMS) and CIM-ESRA models. MBE, 

RMSE, and MAE are measured in W/m2, their relative versions in %, and R2 is dimensionless. 

  MBEn  RMSE  RMSEn MAE   MAEn  R2 

CAMS  -0.99 93.38 22.22 54.94  13.07 0.894 

CIM-

ESRA 
1.63 74.79 17.07 49.34  11.26 0.928 

 

 

It is possible to notice that the estimates from the CIM-ESRA model fit more accurately 

to the region compared to those obtained by the Heliosat-4 model. The superior perfor-

mance of CIM-ESRA is due to two reasons: (a) it uses GOES-16 information instead 

of MSG, which has better-viewing angles for the Pampa Húmeda region, and (b) it is a 

semi-empirical model whose adjustable parameters were determined for the region 

(previously) by using information from 10 sites in the 2010-2017 period [8]. The per-

formance reference is therefore given by the CIM-ESRA model, which also uses infor-

mation from the same satellite as the input data used for the machine learning algo-

rithms in this work. 

 

 

3.2 Implementation of Machine Learning Models 

 

The variables detailed in section 2.3 were used as input for the implemented models. 

Different combinations of input variables were tested for the implemented models, and 

it was found that for the black box algorithms, it was sufficient to have information 
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from the satellite image variables. Tables 4 and 5 show the results. The metrics are 

presented for each validation year, with the fit to the other two remaining years of the 

2019-2021 period. The last column shows the average performance over the 3 valida-

tion years, which is used here as a comparison value with the CIM-ESRA reference in 

Table 3. 

 

Table 4. Results of ML models using all input variables. 

 Linear Regression  
Neural Networks 

100 Hidden ReLU- 

Adam 

 Random Forest 

n=30 

Metric 2019 2020 2021 Mean  2019 2020 2021 Mean  2019 2020 2021 Mean 

MBE 0.08 -1.32 1.10 -0.05 
 

-0.59 -1.45 -2.52 -1.52 
 

1.26 -1.99 1.73 0.33 

MBEn 0.02 -0.28 0.25 0.00 
 

-0.14 -0.31 -0.58 -0.34 
 

0.30 -0.43 0.40 0.09 

RMSE 70.49 69.05 70.79 70.11 
 

68.84 67.19 68.61 68.21 
 

71.88 69.14 70.44 70.49 

RMSEn 16.86 14.79 16.37 16.01 
 

16.47 14.40 15.87 15.58 
 

17.19 14.81 16.29 16.10 

MAE 45.08 40.88 44.98 43.65 
 

40.74 37.59 39.81 39.38 
 

42.29 39.16 42.21 41.22 

MAEn 10.78 8.76 10.40 9.98 
 

9.74 8.05 9.21 9.00 
 

10.12 8.39 9.76 9.42 

R2 0.94 0.95 0.94 0.94 
 

0.94 0.95 0.95 0.95 
 

0.94 0.95 0.94 0.94 

 

 

Table 5. Results of the ML models using only satellite variables (excluding the clear sky model 

and the geometric variable Cos(z)). 

 Linear Regression  
Neural Networks 

100 Hidden ReLU- 

Adam 

 Random Forest 

n=30 

Metric 2019 2020 2021 Mean  2019 2020 2021 Mean  2019 2020 2021 Mean 

MBE -0.95 18.50 -9.97 2.53  -5.33 -0.26 0.40 -1.73  0.45 0.82 2.35 1.21 

MBEn -0.23 3.96 -2.31 0.48  -1.28 -0.06 0.09 -0.41  0.11 0.18 0.54 0.28 

RMSE 176.82 211.23 179.33 189.13  70.13 67.73 69.64 69.16  72.08 69.16 71.28 70.84 

RMSEn 42.29 45.26 41.48 43.01  16.77 14.51 16.11 15.80  17.24 14.82 16.49 16.18 

MAE 135.59 150.77 141.22 142.53  44.20 41.07 42.67 42.65  44.21 41.40 44.51 43.37 

MAEn 32.43 32.31 32.66 32.47  10.57 8.80 9.87 9.75  10.58 8.87 10.29 9.91 

R2 0.62 0.54 0.63 0.60  0.94 0.95 0.94 0.95  0.94 0.95 0.94 0.94 

 

When using all variables, the statistical techniques exhibit similar performance, alt-

hough it is possible to notice that the neural network's performance is slightly better. If 

we look at, for example, RMSEn, the neural network's performance is 0.4% higher than 

the others on average. It also shows a 1.5% RMSEn gain compared to the CIM-ESRA 

reference. When comparing the linear regression with and without the clear sky esti-

mates and the Cos(z) variable, a marked downgrade in performance is noticed, unlike 

what happens in the case of nonlinear models (only a loss of 0.2% in RMSEn is ob-

served). This suggests that for these types of techniques, the satellite variables would 

suffice to estimate solar radiation (F01-F18 and R01-R18), but this is not the case for 

the simple linear regression algorithm. In that case, linear regression loses the necessary 

temporal reference to estimate a magnitude with a marked geometric daily and annual 
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component like the GHI. However, machine learning algorithms do not lose it. The 

geometric information is implicit in the relationship between FR and RP, and ML algo-

rithms are capable of learning from it. Fig. 2 shows the predictions of the neural network 

that only uses satellite information for two days with cloudy sky conditions correspond-

ing to January (top) and July (bottom). Fig. 3 shows the estimation of the same model 

but for two clear days during the year. 

 

 
Fig. 2. Comparative plots between ground measurements and the neural network that uses only 

satellite variables for two days in January 2021 (top) and two days in July (bottom) under cloudy 

sky conditions. 

 

 

Fig. 3. Comparative plots between ground measurements and the neural network that uses only 

satellite variables for two days with clear sky conditions. 
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It can be appreciated in the previous plots that the model is capable of capturing, in 

general, the presence of clouds and their effect on GHI with a good level of success. 

This is reflected in the metrics of Table 5. In the case of clear sky days, it can be ob-

served that the predicted curve is not completely smooth. This could be due to the non-

use of the clear sky model or the calculated geometric information of Cos(z), and could 

be indicating the approximate temporal positioning of the algorithm derived from the 

joint use of FR and RP. 

4 Conclusions and future work 

In this study, it was observed that the neural network algorithm had the best perfor-

mance, followed by the random forest method, even after eliminating input variables 

such as the clear sky model and cosine of the solar zenith angle. In contrast, a simple 

linear regression showed poor performance when these input variables were removed, 

as it could not reconstruct the necessary temporal reference to estimate GHI. In terms 

of comparison with the CIM-ESRA reference model, better performance was observed 

for the empirical ML models. The comparative metrics between CIM-ESRA and the 

neural network are all favorable to the latter, with MAEn of 11.3% vs 9.7%, RMSEn 

of 17.1% vs 15.8%, and MBEn of +1.6% vs -0.4%. However, it will be important in 

future work to analyze the behavior of the empirical model in other locations in the 

Pampa Húmeda region, i.e., to analyze its spatial extrapolation using a testing set in 

different measuring sites. For future work, it would also be appropriate to consider other 

relevant satellite variables, such as the satellite cloud index [3] and information from 

the satellite's infrared channels. These parameters can provide additional information 

about the cloud cover or atmospheric transmissivity, which could improve the accuracy 

of ML solar radiation estimates. Therefore, it would be valuable to evaluate the inclu-

sion of these variables in the model and measure their impact on its performance. 
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